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A general approach to the construction of dual variational principles for the linear problems of filtrational 

consolidation and two-phase filtration of an in~mpressible fluid is proposed. If the porosity and saturation 

are known, variational principles enable one to determine the displacement and stress fields in the solid 

phase as well as the pressure and velocity fields in the liquid phase. The variational principles can be derived 

from variational problems, the solution of which is equivalent to ensuring that the defining relations 

between the strains and stresses as well as the rate of filtration and the pressure gradient are satisfied. Using 

variational principies, it is shown that consolidation and fiit~tion problems can be split into problems 

characterizing the behaviour of the individual phases. Thus the construction of the variational principles can 

be reduced to a certain connection scheme between the variational principles for the solid and liquid phases. 

1. THE VARIATIONAL APPROACH 

CONSIDER a dissipative process with volume dissipation, which can be written in the form 

Z = XY = X,Y, + . . . + X,Y, 

whereX=(Xi, . . . . X,) are the generalized forces and Y = (Yr , . . . , Y,) are the generalized 
velocities. According to the normal dissipation hypothesis fl, 21, for any real thermodynamic 
process, there exists a dissipation potential q(Y) such that 

X E 4 (Y) (1.1) 

where q(Y) is the convex lower semicontinuous characteristic functional, (X) is a subgradient of 
cp (Y) at Y, and acp (Y) is the set of all subgradients of y, (Y) at Y, which consists of the single element 
gradrp(Y) in the case of smooth q(Y). A vector X corresponds to the given vector Y if and only if X 
is a subgradient of q(Y) at Y. Formula (1.1) implies the inverse relation [l, 21 

Y E (3q* (X) (1.2) 

where the adjoint dissipation potential q*(X) is the convex lower semicontinuous characteristic 
functional connected with q(Y) by the Young-Fen~hel transfo~ation [3] 

‘p* (X) = supy fXY - cp (Y)l 

For smooth convex potential cp (Y) and cp* (X), we can write 

X = grad QI (Y), Y = grad ‘p* (X) 

instead of (1.1) and (1.2). 
It is customary to assume that the laws (1.1) and (1.2)) which enable one to state the relations 
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between X and Y, determine the dissipative mechanism [2]. If there are two dissipative mechanisms 
with potentials %‘i (Y), and q2(Y), then one can define a new mechanism by means of the potential 

Q(Y) -WY)+%(Y) 

In the general case Q* (X) is not equal to the sum of the potentials @t(X) and a*(X) adjoint to 
9t (Y), and q2 (Y), respectively. The dissipative mechanisms 11;)‘t (Y) and q2 (Y) are assumed to be 
unconnected [Z] if q*(Y) is independent of any of those variables Y, on which ‘Pi (Y) depends. In 
this case we can write 

where Ep and Eq are two mutually complementary subspaces of dimensions p and q such that 
p-i-q=n. 

The following assertions are equivalent [l]: 

(a) X’EWY’), 
(b) Q(Y) - X’Y reaches a minimum with respect to Y at Y = Y’, 
(a*) Y’ E aQ* (X’), 
(b*) Q*(X) - XY’ reaches a minimum with respect to X at X = X. 
Hence it follows that, for the dual process (X’Y”) in a, the quantity Y” corresponding to X” can be 

determined by means of the solution of the problem 

infv B,“(Y) = infy s [Q (Y) - XOY] &I (1.3) 
0 

In this formulation the definition of Y” is trivial, since it is necessary to specify the forces (X1’, 
. . . , X,‘) in the entire domain 0. The problem arises from transforming the integral /oX”Y dfi using 
the given constraints into an integral over the boundary l? of Sz. In this case, to determine Y”, it 
suffices to know the forces (X1’, . . . , X,“) on I. A similar problem also arises when determining X 

infx B%*(X) = infx s fQ* (X) - XY”] dSZ (1.4) 
0 

The normal dissipation hypothesis of the form (1.3), (1.4) is the principle of least energy 
dissipation [4,5] if a wider class of functions Q(Y) and Q* (X) is taken into account. 

For the dissipation potential Q(Y), the Young-Fenchel transformation with respect to some of the 
variables Y, determines the partially adjoint potentials. For a system with two independent 
dissipative mechanisms 9i (Y i ) and q2 (Yz), we can apply a transformation with respect to the 
variables involved in Y2 to obtain the partially adjoint potential 

Q (Y19 X9) = supy, [X,Y, - Q (Yit Y&l = 0, (X,) - y, (Yl) 

The variational problem for constructing the variational principle in Yt and X2 will then have the 
form 

Instead of using problems (1.3), (1.4) and (1.5) to construct the variational principles, one can 
start from the variations 

6B, (Y) = S[6Q (Y) - X8Y-j &i-i, 
n 

6 B, (X) = 1 [&p* (X) - Yi3X] tiCA 
a 

which, on equating to zero, give 



Filtrational consolidation and two-phase filtration theories 69 

SB, (Y) = 0, m, (x) = 0, m, (Yl, X,) = 0 (1.6) 
which is equivalent to satisfying the defining relations between Y and X. Here the problem consists 
in reducing the variations 6Bi (Y), 6B2 (X) and 6B3 (Y1 , X2) to the variations of some functionals. 

Variational problems similar to (1.3)-(1.6) can be written down for any convex potential 
connecting arbitrary dual variables X and Y by means of (1.1) or (1.2), and they can be used to 
construct variational principles. 

2. TWO-PHASE FILTRATION OF AN INCOMPRESSIBLE FLUID 

We shall write down the equations of continuity for the phases, the relation between the pressures 
in the phases, and an expression for entropy production [6] due to the motion of the liquid phases 
with respect to the solid phase for Ti = T2 = const in the energy representation: 

(sm),t f div (smvr) = 0, ((1 - s) m), t + div ((1 - s) mv.J = 0 

Pl - Pa = PC (4 2 = --VP,% - VPrnB 

Here v1 and v2 are the velocities of motion of the phases, s is the saturation of the first phase, m is 
the porosity, q1 = smvl and q2 = (1 - s)mv, are the filtration velocities of the phases and Tl , T, are 
the absolute temperatures of the phases. 

To close the equations, we can use the normal dissipation hypothesis, according to which there 
exist convex dissipation potentials 

cp (Y1, Y,), ‘p* (x1, X3, where Xi = --VP,, X8 = --Vp2, Y1 = q1, Y, =a. 

We will assume that the dissipation process can be represented by two unconnected dissipative 
mechanisms. Then 

cp (Y1, Y,) = y1 (q3 + u’s (f4*)9 ‘P* (X,9 w = @I (VP,) + 

-+ a23 (VP*) (2.1) 

where ‘Pi and @i are the dissipative and adjoint dissipative potentials for the liquid phase [7]. 
Taking (2.1) into account, we can write down the system of equations of two-phase filtration in 

the form 

--Qi E @i (VP$ or - Vpi 65 OYi (St), i = 1, 2 (2.2) 

Pl - Pa = PC (4 (2.3) 

div qr + div q1 = 0 (24 

div q1 = --ms,t or div qa = ms, t V-5) 

In the case of smooth potentials the filtration laws (2.2) for the phases have the form 

-9ti = @% (vPd/aP~, i or -PI, i = @I hJ/@?u 

--Qsi = aa3, (VPs)laPa, i or -Pa, i = ~Yz (%)/hi 

where qii, q2i and pi,i , p2.i are the components of ql , q2 and Vpi , VP,, respectively. 
In particular, the dissipation potentials @i (VP,), and a2(Vp2) can have the following expressions 

PI: 
I %I 

@,PP,)= s h(a*s)k 

I VPSI 
Q, (VPP) = 1 W(%S)h 

0 0 

where the convexity of @i (Vpi) and (P2 (Vp2) is ensured by the properties of cpl ((Y, s) and (p2 (OL, s). 
For the linear filtration laws 

qi = --k (fi(s)/pi) Vpi (2.6) 

the functions cpl (a, s) and (p2 (a, s) have the form 
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where k is the absolute permeability, fr (s) (i = 1,2) are the relative permeabilities of the phases and 
Pi (i = 1, 2) are the viscosities. The following boundary 
system (2.2)-(2.5): 

PJr, = P” 

!&I Ir, = %I0 

conditions are given for the solution of 

(2.7) 

(2.8) 

Here F = F, + F, is the bounda~ of the domain fI of the solution of the problem, qn = qln + qzn is 
the normal component of the total filtration velocityp = lpr + (1 - I)p, with I= I(s) such that p = pl 
and p = p2 for Z = 1 and I = 0, respectively, p is the mean pressure for E(s) = s or I(S) = F(s) in the 
Buckley-Leverett function. 

Equations (2.2) play a fundamental role in the construction of variational principles. Equations 
(2.3), (2.4) and the boundary conditions (2.7), (2.8) are used as constraints in the construction. We 
shall construct a variational principle in terms of the velocities. From (1.3) we have 

Transforming the right-hand side of (2.9), taking the constraints (2.3), (2.4), and (2.8) into 
account, we obtain the functional 

+ 5 P, (qz) - q,V VPJI dQ + 1 qnp“dr (2.10) 
a rr, 

It can be verified directly that a minimum of (2.10) subject to the constraints (2.4) and (2.8) is 
attained for the real velocity field ql, q2, By analogy, from (1.4) we can construct the functional 

whose minimum subject to the constraint (2.7) is attained for the real pressure held p. 
Applying duality methods 131, we can find that the dual to the variational problem 

Q,, c&i,, (2.8) zl(qly qA (2.11) 

is the problem for the maximum of the functional [-I&)], i.e. 

We write down the boundary conditions 

chtr, = hn09 %n r;i I = %nO (2.12) 

and we transfer from (2.11) to the dual problem with respect to one of the variables. We obtain two 
minimax problems for 1, and Z, such that 



Filtrational consolidation and two-phase filtration theories 71 

In the case of the linear filtration laws (2.6), from the functional (2.10), in which we set 
I(s) =F( ) d s an we express q1 and q2 in terms of the total velocity q = q1 + q2, we get 

(2.13) 

F (4 = fl wcp (49 9 (4 = fl 0 + hIP2) fe (4 
where q(s) is the relative mobility. After some transformations, the functional (2.13) can be written 
in the form 

(2.14) 

P* = P,F (4 + PI (i- F (4) + \ PC (4 dF (4 
s 

Under the constraints 

div q = 0, q,, II-, = ho 

the minimum of (2.13), (2.14) is attained for the real total velocity field q. 

3. FILTRATIONAL CONSOLIDATION 

We consider the variational approach for problems with a viscoplastic framework. We write down 
the equations of continuity for the phases, the equilibrium equation, and the expression for entropy 
production [6] due to the work qVp in the liquid phase and aifeii in the solid phase for 
TI = T2 = const in the energy representation: 

--m,t + div ((1 - m) u’) = 0, m,t + div (mv) = 0 

dj, j - /I, i = 0, C = u,:e,j - qVp 

Here q = m (v - u’) is the filtration velocity, v is the velocity of motion of the liquid phase, u is the 
displacement vector of the solid phase, p is the porous pressure, ,f is the effective stress tensor, e is 
the viscoplastic deformation velocity tensor and Tl and T2 are the absolute temperatures of the 
phases. 

According to the normal dissipation hypothesis, there exist convex dissipation potentials cp(Y1, 
Y2) and ‘p* (XI, X,), where X1 = uf, X2 = -VP, Y1 = e and Y2 = q. Assuming that the process of 
dissipation can be represented by two unconnected dissipative mechanisms, 

cp (Y1, Yt) = Ur, (e) + yq 00, ‘P* (xl9 k,) = @, (a’) + aP (VP) 

we can write down the system of filtration consolidation in the form 

-q E a, (VP) or -VP E aYq (q) 

e E SD, (d) or 47’ E r9Ye (e) 

d,jj - p,i = 0 

(3.1) 

(3.2) 

(3.3) 
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div q + div u’ = 0 (3.4) 

m, t = div (1 - m) u’ (3.5j 

where qq, ap and VI,, Qpa are the dissipative and adjoint dissipative potentials for the liquid phase 
[7] and the viscoplastic framework [S], respectively. 

In the case of smooth potentials the laws (3.1) and (3.2) governing the behaviour of the phases 
have the form 

where eii, qi and aif, p,i are the components of e, q and uf, Vp, respectively. 
In problems concerned with consolidation the variation of the porosity m is usually neglected and 

Eq. (3.5) is not used. The following boundary conditions are given for solving the system of 
equations (3.1)-(3.4): 

P Ir, = PO, Qn, Ir, = 4!n” (3.6) 

@rjf - Z&1) nj Ir, = I&O, u; Ir, = %O (3.7) 

where I = I, + IU = I’, + I4 is the boundary of the domain of the solution of the problem. 
Equations (3.1) and (3.2) are fundamental in the construction of the variational principles. 

Equations (3.3) and (3.4) and the boundary conditions (3.6) and (3.7) can be used as constraints. 
The structure of the system of equations (3.1)-(3.5) is similar to that of the system of equations 
(2.2)-(2.5) for two-phase filtration. 

From (1.3), after suitable transformations, we can obtain the following functional in terms of the 
velocities: 

1, (u’, n) = S [ye (ej + Y, (@I dQ - S %Qia dr + S porn dr (3.8) 
(1 r. rP 

It can be verified directly that the minimum of this functional subject to the constraints (3.4), (3.6), 
and (3.7) is attained for the real velocity field u, q. From (1.4) we obtain the functional 

Z* (a’* p) = S, [@(I (a’) + O’p VP)] dQ - S (a if - P&j) njuimo dr + 5 Wn” dr (3.9) 
ru r4 

the minimum of which subject to the constraints (3.3), (3.6), and (3.7) is attained for the real field of 
p, a$ Applying duality methods [3], we find that the dual of the variational problem 

inf 
P’, Qe6.4).(6.6), (:.'I1 

Z, (u’* Q) (3.10) 

is the problem concerned with the maximum of the functional [-Zz(af, p)], i.e. 

inf 
II'. WEbO, ha)* (8.7) 

Z1 (u’, q) = 
p,~f~o.~jt~*.4~,(8.7) 

[--I,t~fJJ)l 

Passing from (3.10) to the dual problem with respect to one of the variables, we can obtain two 
variational problems for Za and Z, such that 

sup inf I, (u’, p) = inf 
FS(6.6)U'E(8.7) u's clE(Y.4). 0.9, (6.7) 

Il(U', q) 

sup inf I,(d,p,q) = u.E(a4y6, (*,) J1W*Q) 
p, &(6.6),(6.,) ~36.6) , .I... 

I, (u’, p) = S [Ye (e) - do (VP)] &I - ‘j &%&I’ - 1 pq,,” do’ - 
a r. rq i 

p div u* do 
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I, (a’, p, q) = s pa (of) - 0 (q)] dQ - s @*f - PQ qu’” dr - 
0 *u 

(3.11) 

For IU = I, I4 = I, the functional (3.8) has the form 

I1 (u’, q) = S [% (o) + Y, (@I dQ 
0 

(3.12) 

In this case, if q,(e) = D,(e) and qq(q) = Dq(q), where D, and D, are dissipative functions, then 
the real process is determined by the minimum of the rate of energy dissipation. 

For the problem of consolidation with elastic framework, the functional generalizing (3.12) has 
the form 

(3.13) 

where W,(E) is the convex elastic potential, &EI~W,(E), and E is the small-strain tensor. For 
qq (q) = D, (q), the functional (3.13) approximately characterizes the sum of the energy storage and 
dissipation rates. In the general case it has the form 

11 (us Q) = 
W, (8 W -w, (8 U - 4) 

At + Y,(n)] dQ- 

- I-I, s ui (t) - ui (t - At) 

At dr + P”qndr s (3.14) 

The functionals dual to (3.liyare similar to (3.9) and (3.11): 
We consider the functionals Zi in the minimization problems (3.8) and (3.14). The variables u’, q 

in (3.8) are connected by (3.4). If the quantities 

div u’ = x (P, t), div q = -_x (r, t), r E R (3.15) 

were known, then one could solve the problem of minimizing the functional Z, (II’, q) with respect to 
u’, q and separately consider the problems 

inf J1 (u’) for div u’ = x (c, t) (3.16) 

and 

i.e. 

inf J3 (q) for div q = -_x (r, t) (3.17) 

inf zr (U’S q) = inf J1 (u’) + (3.18) 
u’,qE(3.4),(3.4)* (3.7) U’E(3.7), (3.16) CE@.~%Q Jz (q) 

By analogy, the problem of minimizing the functional (3.14) can be separated with respect to u 
and q and represented in a form similar to (3.18). The representations mentioned above split the 
problem of consolidation into two problems, one of which characterizes the process of strain, while 
the other one characterizes the process of filtration. In the problems 

of, _w, (3 7) E- J3 ($t P)I* aup [- J4 (~11 . . 2=(3.(l) 

dual to (3.16) and (3.17), respectively, the functionals 53 (af, p) and J4 (p) have the form 

i3 (uf, p) = 1 Q, (a’) dfl - 5 
0 *u 

(CQ’ - p6u) n,u” dI’ - 1 px (r, t) dR 
Q 

J4 (P) = d a,, (VP) da + 1 pc,“dr + 1 PX (r, t) da 
pa Q 
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Introducting the Lagrange multiplier X = -p, we write down the functionals 

1,’ (u’, p) = Jr (u’) -s p (div u’- x (r, t)) c&2 
P 

1,’ (q7 P) = 1, (4 -5 P W q -I- x (G t)) dQ 
a 

Combining Ji’, J2’, Js, .I4 so as to eliminate x(r, t), we can obtain the functionals (3.9) and (3.11). 
A similar splitting also holds in problems concerned with two-phase filtration. Therefore, the 
problem of constructing the variational principles in the case of ~~trational consolidation and 
two-phase filtration can be reduced to that of instructing the variational principfes for the 
individual phases. 

To construct the variational principles for consolidation problems with linear defining relations, 
one can use the method of [9, lo] based on the idea of constructing variational principles for 
equations with linear self-adjoint operators [ll]. In this paper a non-linear form of the defining 
relations is assumed. 

Using variational problems of the type (1.6), we shall present examples of constructing the variational 
principles. 

Case 3. In the case of small strains, for the non-linear elastic behaviour oi, f = aW(&)la&i~ of the solid phase 
and the non-Iinear behaviour qi = -~~(V~)/V~.~ of the liquid phase, we write down the variation 

The variation vanishes if and only if the defining relations are satisfied. After some reduction we can obtain the 
variations SZs (u, p), where [ 121 

- s l 

n.“*u. dr - 
I 1 s izq,,%p dl’ - s p*ui, i dQ 

fa 1 
9 

u 

Under the constraints (3.6) and (3.7) SZs(u, p) is equal to zero for the real field u, p. 
By analogy, one can obtain the functionals Ii, 12, I,. The functionals Ii, 12, 13, 14 for the linear viscoelastic 

framework uij = Jiikl*Ekl can be constructed in a similar way. The functional Z, has been presented in [ 131. 

Case 2. In the case of small strains, for a Kelvin-Voigt medium oif = PP (E, e’)/aEij and the non-linear 
filtration law q = -f( 1 Vp 1) Vp 1 IVp 1, the functionals ii ,Zz, 13, Z4 can be constructed by analogy with (34, (3.9), 
and (3.11). The functional 

Zs~u’,p)=jV~s,s’)dP- 1 FI~u~dL~i~‘f~a~drrdS2-~ 
lJ I’, rF 

q,“p dI’ - s pu;, i dQ 

1l 0 u 

has been obtained before.? 

Care 3. In the case of small strains, for the non-linear elastic behaviour oif = aW(E)/asij of the solid phase 
and the non-linear behaviour qi = -cW(V~)/V~,~ of the liquid phase, we write down the variation 

t 

84 (e, P) = r [811 (8) - aijfbeij] do - 1 [Ur (VP) +- q$p, J dS2 dt 
u 0 % 

~KOSTERIN A. V., The variational principle of filtrational consolidation. Kazan Univ., Kazan, 1986, deposited in 

VINITI 16.12.86, No. 8598-B. 
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which is equal to zero, if and only if the laws governing the behaviour of the phases are satisfied. After some 
reduction, we obtain the variation SZs(u, p), where 

Under the constraints (3.4) and (3.7, the variation 8&(u, p) vanishes for the solution of the problem. 

Case 4. In the case of finite strains Eij = f(U,j+ Uj,i + ~k,i~k,i), for the non-linear law oif’ = ~W(E’, of)/aE+’ 
governing the behaviour of the solid phase and the linear filtration law qi = -k,p,I, we can write down the 
variation 

which vanishes if and only if the laws governing the behaviour of the phases are satisfied. After some reduction, 
we obtain the variation 6&(u’, p), where 1141 

For suitable restrictions [141 for the variables u*, p’, which are subject to variations, SZ,(u’, p’) vanishes for 
the solution of the problem. 

I wish to express my gratitude to A. V. Kosterin for discussing the results. 
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